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Warning of a forthcoming collapse of the
Atlantic meridional overturning circulation

Peter Ditlevsen 1,3 & Susanne Ditlevsen 2,3

The Atlantic meridional overturning circulation (AMOC) is a major tipping
element in the climate system and a future collapsewould have severe impacts
on the climate in the North Atlantic region. In recent years weakening in cir-
culation has been reported, but assessments by the Intergovernmental Panel
on Climate Change (IPCC), based on the Climate Model Intercomparison
Project (CMIP) model simulations suggest that a full collapse is unlikely within
the 21st century. Tipping to an undesired state in the climate is, however, a
growing concern with increasing greenhouse gas concentrations. Predictions
based on observations rely on detecting early-warning signals, primarily an
increase in variance (loss of resilience) and increased autocorrelation (critical
slowing down), which have recently been reported for the AMOC. Here we
provide statistical significance and data-driven estimators for the time of tip-
ping. We estimate a collapse of the AMOC to occur aroundmid-century under
the current scenario of future emissions.

A forthcoming collapse of the Atlantic meridional overturning circu-
lation (AMOC) is a major concern as it is one of the most important
tipping elements in Earth’s climate system1–3. In recent years, model
studies and paleoclimatic reconstructions indicate that the strongest
abrupt climate fluctuations, the Dansgaard-Oeschger events4, are
connected to the bimodal nature of the AMOC5,6. Numerous climate
model studies show a hysteresis behavior, where changing a control
parameter, typically the freshwater input into the Northern Atlantic,
makes the AMOC bifurcate through a set of co-dimension one saddle-
node bifurcations7–9. State-of-the-art Earth-system models can repro-
duce such a scenario, but the inter-model spread is large and the cri-
tical threshold is poorly constrained10,11. Based on the CMIP5
generation ofmodels, theAR6 IPCC report quotes a collapse in the 21st
century to be very unlikely (medium confidence)12. Among CMIP6
models, there is a larger spread in the AMOC response to warming
scenarios, thus an increased uncertainty in the assessment of a future
collapse13. There are, however, model biases toward overestimated
stability of the AMOC, both from tuning to the historic climate
record14, poor representation of the deep water formation15, salinity
and glacial runoff16.

When complex systems, such as the overturning circulation,
undergo critical transitions by changing a control parameter λ through

a critical value λc, a structural change in the dynamics happens. The
previously statistically stable state ceases to exist and the system
moves to a different statistically stable state. The system undergoes a
bifurcation, which for λ sufficiently close to λc can happen in a limited
number of ways rather independent from the details in the governing
dynamics17. Besides a decline of the AMOC before the critical transi-
tion, there are early-warning signals (EWSs), statistical quantities,
which also change before the tipping happens. These are critical
slowing down (increased autocorrelation) and, from the Fluctuation-
Dissipation Theorem, increased variance in the signal18–20. The latter is
also termed “loss of resilience”, especially in the context of ecological
collapse21. The two EWSs are statistical equilibrium concepts. Thus,
using them as actual predictors of a forthcoming transition relies on
the assumption of quasi-stationary dynamics.

The AMOC has only been monitored continuously since 2004
through combinedmeasurements frommoored instruments, induced
electrical currents in submarine cables and satellite surface
measurements22. Over the period 2004–2012, a decline in the AMOC
has been observed, but longer records are necessary to assess the
significance. For that, careful fingerprinting techniques have been
applied to longer records of sea surface temperature (SST), which,
backed by a survey of a large ensemble of climate model simulations,
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have found the SST in the Subpolar gyre (SG) region of the North
Atlantic (area marked with a black contour in Fig. 1a) to contain an
optimal fingerprint of the strength of the AMOC23–25.

Figure 1b shows the SGand theGMSSTsobtained from theHadley
Centre Sea Ice and Sea Surface Temperature data set (HadISST)26.
Figure 1c shows the SG anomaly, and Fig. 1d shows the GM anomaly
with a clear global warming trend in the last half of the record. The
AMOC fingerprint for the period 1870–2020 is shown in Fig. 1e. This is
the basis for the analysis. It has been reported11,27 that this and similar
AMOC indices show significant trends in the mean, the variance and
the autocorrelation, indicating early warning of a shutdown of the
AMOC. However, a trend in the EWSs within a limited period of
observation could be a random fluctuation within steady-state statis-
tics. Thus, for a robust assessment of the shutdown, it is necessary to
establish a statistical confidence level for the change above the natural
fluctuations. This is not easily done given only one, the observed rea-
lization of the approach to the transition. Here we establish such a
measure of the confidence for the variance and autocorrelation and
demonstrate that variance is the more reliable of the two. A further
contribution is an estimator of not only whether a transition is
approaching but also the time when the critical transition is expected
to occur. The strategy is to infer the evolution of the AMOC solely on
observed changes in mean, variance and autocorrelation. The typical
choice of control parameter is the flux of freshwater into the North
Atlantic. River runoff, Greenland ice melt and export from the Arctic
Ocean are not well constrained28; thus, we do not assume the control
parameter known. Boers27 assumes the global mean temperature T to
represent the control parameter. Although T has increased since ~1920
(Fig. 1d), the increase is not quite linearwith time. Allwe assumehere is
that the AMOC is in an equilibrium state prior to a change toward the
transition. The simplest uninformed assumption is that the change is
sufficiently slow and that the control parameter approaches the
(unknown) critical value linearly with time. This assumption is con-
firmed by a close fit of the estimated model to the observed AMOC
fingerprint. Although we make no explicit assumptions, the primary
driver of climate change, the logarithm of the atmospheric CO2 con-
centration, does, in fact, increase close to linearly with time in the
industrial period29. Our results are robust without making specific
assumptions regarding the driver of the AMOC.

In this work, we show that a transition of the AMOC is most likely
to occur around 2025-2095 (95% confidence interval).

Results
Modeling and detecting the critical transition
Denote the observed AMOC fingerprint by x(t) (Fig. 1e).Wemodel it by
a stochastic processXt, which, depending on a control parameter λ <0,
is at risk of undergoing a critical transition through a saddle-node
bifurcation for λ = λc = 0. The system is initially in a statistically stable
state, i.e., it follows some stationary distribution with constant λ = λ0.
We are uninformed about the dynamics governing the evolution of Xt
but can assume effective dynamics, which, with λ sufficiently close to
the critical value λc =0, can be described by the stochastic differential
equation (SDE):

dXt = � ðAðXt �mÞ2 + λÞdt + σdBt , ð1Þ

wherem=μ�
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
and μ is the stable fixed point of the drift, A is a

time scale parameter, Bt is a Brownian motion and σ2 scales the var-
iance. Disregarding the noise, this is the normal form of the co-
dimension one saddle-node bifurcation17 (see “Methods”). The square-
root dependence of the stable state: μ�m∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λc � λ

p
is the main

signature of a saddle-node bifurcation. It is observed for the AMOC
shutdown in ocean-only models as well as in coupled models, see
Fig. 2, in strong support of Eq. (1) for the AMOC.

At time t0, λ(t) begins to change linearly toward λc = λ(tc) = 0:

λðtÞ= λ0ð1�Θ½t � t0�ðt � t0Þ=τrÞ, ð2Þ

where Θ[t] is the Heaviside function and τr = tc − t0 >0 is the ramping
time up to time tc, where the transition eventually will occur. Time tc is
denoted the tipping time; however, an actual tipping can happen earlier
than tc due to a noise-induced tipping. As the transition is approached,
the risk of noise-induced tipping (n-tipping) prior to tc is increasing and,
at some point, making the EWSs irrelevant for predicting the tipping.
The probability for n-tipping can, in the small noise limit, be calculated
in closed form, Pðt,λÞ= 1� expð�t=τnðλÞÞ, with mean waiting time
τnðλÞ= ðπ=

ffiffiffiffiffi
∣λ∣

p
Þ expð8∣λ∣3=2=3σ2Þ (see “Methods”).

The mean and variance are calculated from the observations as
the control parameter λ(t) is possibly changing. These EWSs are
inherently equilibrium concepts and statistical; thus, a time window,
Tw, of a certain size is required for a reliable estimate. As the tran-
sition is approached, the differences between the EWSs and the pre-
ramping values of the variance and autocorrelation (baseline)
increase; thus, a shorter window Tw is required for detecting a dif-
ference. Conversely, close to the transition critical slowing down
decreases the number of independent points within a window, thus
calling for a larger window for reliable detection. Within a short
enough window, [t − Tw/2, t + Tw/2], we may assume λ(t) to be con-
stant and the noise small enough so that the process (1) for given λ is
well approximated by a linear SDE, the Ornstein–Uhlenbeck
process30. A Taylor expansion around the fixed point μ(λ) yields the
approximation

dXt≈� αðλÞðXt � μðλÞÞdt + σdBt ð3Þ

where μðλÞ=m+
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
and αðλÞ=2

ffiffiffiffiffiffiffiffi
A∣λ∣

p
is the inverse correlation

time. For fixed λ, the process is stationary, with mean μ, variance
γ2 = σ2/2α and one-lag autocorrelation ρ = expð�αΔtÞ with step size
Δt = 1 month. As λ(t) increases, α decreases, and thus variance and
autocorrelation increase. From μ, γ2 and ρ the parameters of Eq. (1) are
determined: α = � logρ=Δt, σ2 = 2αγ2, A = α/2(μ −m) and
λ= ðσ2=4γ2Þ2=A. Closed form estimators for μ, γ2 and ρ are obtained
from the observed time series within a running window by maximum
likelihood estimation (MLE) (Supplementary text S1, see also ref. 31).

The uncertainty is expressed through the variances of the esti-
mators γ̂2 and ρ̂ obtained from the observations within a time window
Tw. The hats indicate that they are estimators and thus stochastic
variables with variances around the true values. Detection of an EWS at
some chosen confidence level q (such as 95 or 99%) requires one of the
estimates γ̂2 or ρ̂ for a given window to be statistically different from
the baseline values γ̂20 or ρ̂0, which depend on the window size as well
as how different the EWSs are from their baseline values.

Time scales in early-warning signals
The detection of a forthcoming transition using statistical measures
involves several time scales. The primary internal time scale is the
autocorrelation time, tac, in the steady state. The ramping time τr over
which the control parameter changes from the steady state value to
the critical value sets an external time scale. For given α(λ) and q-
percentile, the required time window Tw(q, α) to detect a change from
baseline in EWSs at the given confidence level q is given in the closed
form in the next section (Eq. (7) for variance and Eq. (8) for auto-
correlation). The approach to the collapse and the involved time scales
are schematically summarized in Fig. 3, while they are calculated in
Fig. 4a, where the required window size Tw at the 95% confidence level
is plotted as a function of λ for the variance (red curve) and auto-
correlation (yellow curve). These are plotted together with the mean
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Fig. 1 | TheAtlanticmeridional overturning circulation (AMOC)fingerprint, sea
surface temperature (SST) and global mean (GM). a Subpolar gyre (SG) region
(black contour) on top of the Hadley Centre Sea Ice and Sea Surface Temperature
data set (HadISST) SST reconstruction for December 2020. The SG region SST has
been identified as an AMOC fingerprint23. b Full monthly record of the SG SST

together with the global mean (GM) SST. c, d SG and GM anomalies, which are the
records subtracted the monthly mean over the full record. e AMOC fingerprint
proxy, which is here defined as the SG anomaly minus twice the GM anomaly,
compensating for the polar amplified global warming.
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waiting time for n-tipping, tnoise, (blue curve). With Tw = 50 years,
increased variance can only be detected after the time when λ(t) ≈ −1.2
(crossing of red and red-dashed curves). At that time, a window of
approximately 75 years is required to detect an increase in auto-
correlation, making variance the better EWS of the two.When λ ≈ −0.4,
the mean waiting time for n-tipping is smaller than the data window
size. Thus, the increased variance can be used as a reliable EWS in the
range −1.2 < λ(t) < −0.4, indicated by the green band. How timely an
early warning this is depends on the speed at which λ(t) is changing
from λ0 to λc, i.e., the ramping time τr. A set of 1000 realizations has
been simulatedwith λ0 = −2.82 and τr = 140 years, indicated by the time
labels on topof Fig. 4a. Tenof these realizations are shown inFig. 4bon
top of the stable and unstable branches of fixed points of model (1)
(the bifurcation diagram). Figure 4c (d) shows the variance (auto-
correlation) calculated from the realizations within a running 50-year
window (shown in Fig. 4c). The solid black line is the baseline value for
λ = λ0, while the solid blue line is the increasing value for λ = λ(t). The
calculated 95% confidence level for the measurement of the EWS
within the running window is shown by the dashed black and blue
lines, respectively. The corresponding light blue curves are obtained
numerically from the 1000 realizations. The green band in Fig. 4c
corresponds to the green band in Fig. 4a and shows where early
warning is possible in this case.

Statistics of early-warning signals
The variances of the estimators are approximately (see Supplementary
text S1).

Varðγ̂2Þ≈ 2ðγ2Þ2
αTw

=
σ4

2α3Tw
; Varðρ̂Þ≈ 2αΔt2

Tw
, ð4Þ

where Tw = nΔt is the observation window.
The question is then how large Tw needs to be to detect a statis-

tically significant increase compared to the estimated baseline values
γ̂20 and ρ̂0. For a given estimate γ̂2, the estimated difference from the

baseline variance is

Δγ2 = γ̂
2 � γ̂20 = γ̂

2
0ðα̂0=α̂ � 1Þ, ð5Þ

and the estimated difference from the baseline autocorrelation is

Δρ = ρ̂� ρ̂0 = ρ̂0ðeðα̂0�α̂ÞΔt � 1Þ≈ ρ̂0ðα̂0 � α̂ÞΔt: ð6Þ

Since the two EWSs, γ̂2 and ρ̂, are treated on an equal footing, in the

following, we let ψ̂ denote either of the estimators (given explicitly in
Supplementary text S1, Eqs. (S5) or (S6)). The standard error is

sðψ̂Þ=Varðψ̂Þ1=2 (Eq. (4)) and Δ̂ denotes either of the two estimated
differences (5) or (6). The null hypothesis is that λ = λ0, or equivalently

α = α0. The null distribution of ψ̂ is assumed to be Gaussian (confirmed
by simulations). A quantile q from the standard Gaussian distribution
expresses the acceptable uncertainty in measuring the statistical

quantity ψ. We thus get that Δ̂< qsðψ̂Þ at the q-confidence level (95%,
99% or similar) under the null hypothesis. To detect an EWS at the q-
confidence level based on measuring ψ at time t, we require that

Δ̂ðtÞ> qðsðψ̂ðtÞÞ+ sðψ̂0ÞÞ, which, solved for Tw gives for variance:

Tw>2q
2 α̂ðtÞ=

ffiffiffiffiffiffi
α̂0

p
+ α̂0=

ffiffiffiffiffiffiffiffiffi
α̂ðtÞ

p
α̂0 � α̂ðtÞ

 !2

, ð7Þ

and for autocorrelation,

Tw>2q
2

ffiffiffiffiffiffi
α̂0

p
+

ffiffiffiffiffiffiffiffiffi
α̂ðtÞ

p
α̂0 � α̂ðtÞ

 !2

ρ̂�2
0 : ð8Þ

Substituting α0 = 2
ffiffiffiffiffiffiffiffiffiffiffi
A∣λ0∣

p
and αðtÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A∣λðtÞ∣

p
provides the time win-

dow Tw needed to detect an EWS at time t with large probability. Eqs.
(7) and (8) are illustrated in Fig. 4a (red and yellow curves), where it is
seen that detecting a significant increase in variance requires a shorter
data window than detecting a significant increase in autocorrelation.
Two times sðψ̂ðtÞÞ around the mean of the ramped variance and two
times sðψ̂0Þ around baseline values are illustrated in Fig. 4c, d (dashed
lines). Once a trace leaves the baseline confidence interval, a statisti-
cally significant change is detected, and when the two dashed lines
cross, 95% of the traces have detected an EWS (Eqs. (7) and (8)).

Predicting a forthcoming collapse of the AMOC
The AMOC fingerprint shown in Fig. 1e (replotted in Fig. 5a) shows an
increased variance, γ2, and autocorrelation, ρ, plotted in Fig. 5b, c as
functions of the mid-point of a 50-year running window, i.e., the EWS
obtained in 2020 is assigned to the year 1995. The estimates leave the
confidence band of the baseline values (pink area) around the year
1970. This is not the estimate of t0, which happened earlier and is still
to be estimated; it is the year where EWSs are statistically different
from baseline values. The estimates after 1970 stay consistently above
the upper limit of the confidence interval and show an increasing
trend, and we thus conclude that the system is moving toward the
tipping point with high probability.

To estimate the tipping time once it has been established that the
variance and autocorrelation are increasing, we use two independent
methods to check the robustness of our results: (1) Moment-based
estimator that uses the variance and autocorrelation estimates within
the running windows. (2) Approximate MLE directly on model (1)-(2)
with no running window. The advantage of the first method is that it
has less model assumptions; however, it is sensitive to the choice of
window size. The advantage of the second method is that it uses the
information in the data more efficiently given model (1)-(2) is
approximately correct, it has no need for a running window and does

Fig. 2 | Steady state curves from climate model simulations of the North
Atlantic Deep Water (NADW), with a very slowly changing control parameter
(freshwater forcing). Top panel shows ocean-only models, while bottom panel
shows atmosphere-ocean models. The curves are, even away from the transition,
surprisingly well fitted by Eq. (1) (black thin curves). The bifurcation points are
indicated with black circles. Note that for some models, the transition happens
before the critical point, as should be expected fromnoise-induced transitions. The
colored circles show the present-day conditions for the different models. Adapted
from Rahmstorf et al.34.
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not assume stationarity after time t0. In general, MLE is statistically the
preferred method of choice, giving the most accurate results with the
lowest estimation variance.

The first method, the moment estimator of the tipping time
obtains, within the running window, the parameters α(t) (Fig. 5d) and
σ2 (Fig. 5e) of the linearizeddynamics, Eq. (3), and thus also γ2(t).Within
the running window, the data are detrended before estimation by
subtracting a linear regression fit in order not to falsely inflate the
variance estimates caused by deviations from stationarity. Then we
obtain Aλ(t) from σ2 and γ2(t) (Fig. 5f) using that AλðtÞ= ðσ2=4γ2ðtÞÞ2.
This is consistent with a linear ramping of λ(t) beginning from a con-
stant level λ0 at a time t0. By sweeping t0 from 1910 to 1950andTw from
45 to65 years,we obtainAλ0 and τr from the least square errorfit to the
data. This shows a single minimum at t0 = 1924 and Tw = 55 years
(Fig. 6e). Setting t0 = 1924, we obtain tc from a linearfit (regressing λ on
t) from the crossing of the x-axis (λc = 0). This is shown in Fig. 5f (red
line). This yields −Aλ0 = 2.34 year−2 and τr = 133 years. Thus, the tipping
time is estimated to be in the year 2057, shown in Fig. 5f. Since we have
only obtained the combined quantity Aλ= ðσ2=4γ2Þ2, we still need to
determine A andm in Eq. (1). We do that from the best linear fit to the
mean level μ=m+

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
observing that μ=m+

ffiffiffiffiffiffiffiffi
A∣λ∣

p
ð1=AÞ=m+

ðσ2=4γ2Þð1=AÞ. The estimates are shown by the red curves in Fig. 5a–f.
The red dot in Fig. 5a is the tipping point, and the dashed line in Fig. 5b

is the asymptote for the variance. With the parameter values com-
pletely determined, the confidence levels are calculated: The two-
standard error levels around the baseline values of the EWS are shown
by purple bands in Fig. 5b, c. Thus, both EWSs show increases beyond
the two-standard error level from 1970 and onward.

The second method, the approximate MLE of the tipping time, is
applied to model (1)–(2). The likelihood function is the product of
transition densities between consecutive observations. However, the
likelihood is not explicitly known for this model, and we therefore
approximate the transition densities. From the data before time t0,
approximation (3) is used, where exact MLEs are available (Supple-
mentary text S1). This provides estimates of the parameters λ0,m as a
function of parameter A, as well as the variance parameter σ2. To
estimate A and τr, the observations after time t0 are used. After time t0,
the linear approximation (3) is no longer valid because the dynamics
are approaching the bifurcation point, and the non-linear dynamics
will be increasingly dominating. The likelihood function is the product
of transition densities, which we approximate with a numerical
scheme, the Strang splitting, which has shown to have desirable sta-
tistical properties for highly non-linear models, where other schemes,
such as the Euler–Maruyama approximation is too inaccurate32 (Sup-
plementary text S2). Using t0 = 1924, the optimal fit is the same as the
momentmethod, tc = 2057, with a 95% confidence interval 2025–2095.
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Fig. 3 | Illustration of the transition and the time scales involved. a Bifurcation
diagram, the blue curve is the stable state (mean),μ, and the dashed red curve is the
unstable branch representing the edge state, xe, both as functions of the control
parameter λ. At λc the system has a saddle-node bifurcation. b Linear ramping (Eq.
(2)), where the system resides in a stationary state with λ = λ0 until time t0, from
where λ increases linearly with time and reach the critical value λc at time tc.
c Effective dynamics (Eq. (1)) for λ = λ0 indicated by the potential U(x) =A(x−m)3/
3 + λx (yellow) along the same color dashed line in (a). The red parabola is the

quadratic potential corresponding to the approximating linear
Ornstein–Uhlenbeck (OU) process (Eq. (3)). The curve in gray is a realization of the
OU process. The vertical short red bar shows the autocorrelation time, tac, for the
process. The long vertical red bar symbolizes the time window, Tw for calculating
the early-warning signals (EWS). dAs (c) for λ1 close to λc (purple dashed line in (a)).
It canbe seen directly that the gray realization has an increased autocorrelation and
increased variance compared to the situation in (c).
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Confidence intervals for the estimate of the tipping time are
obtained by bootstrap. The likelihood approach provides
asymptotic confidence intervals; however, these assume that the
likelihood is the true likelihood. To incorporate also the uncer-
tainty due to the data generating mechanism (1) not being equal
to the Ornstein–Uhlenbeck process (3) used in the likelihood, we
chose to construct parametric bootstrap confidence intervals.
This was obtained by simulating 1000 trajectories from the ori-
ginal model with the estimated parameters and repeating the
estimation procedure on each data set. Empirical confidence
intervals were then extracted from the 1000 parameter esti-
mates. These were indeed larger than the asymptotic confidence
intervals provided by the likelihood approach, however, not by
much. Histograms of the bootstrapped estimates are shown in
Fig. 6a–d. The histogram in Fig. 6a is the tipping year, repeated in
yellow in 5f.

The mean of the bootstrapped estimates of the tipping time is
〈tc〉 = 2050, and the 95% confidence interval is 2025–2095. The small

discrepancy in the mean is probably due to the approximate model
used for estimation being different from the data-generating model
(1), confirming that the linearmodel still provides valid estimates even
if the true dynamics are unknown. To test the goodness-of-fit, normal
residuals (see “Methods”) were calculated for the data. These are
plotted in Fig. 6f as a quantile-quantile plot. If themodel is correct, the
points fall close to a straight line. Themodel is seen to fit the data well,
further supporting the obtained estimates.

Discussion
We have provided a robust statistical analysis to quantify the
uncertainty in observed EWSs for a forthcoming critical transition.
The confidence depends on how rapidly the system is approaching
the tipping point.With this, the significance of the observed EWSs for
the AMOC has been established. This is a stronger result than just
observing a significant trend in the EWS by, say, Kendall’s τ test27,33.
Here we calculate when the EWS are significantly above the natural
variations. Furthermore, we have provided a method to not only

Fig. 4 | Time scales. a Time scales involved in the critical transition ramping the control parameter λ from λ0 = −2.7 to λc =0, with a ramping time τr = 133 years and σ2 = 0.3.
These parameters areobtained as best estimates from theHadleyCentreSea Ice andSea SurfaceTemperaturedata set (HadISST). The time remainingbefore tc is shownon
top of the plot. The red and orange curves show the timewindow, Tw, needed in order to detect the increase in variance (red) and autocorrelation (orange) above the pre-
ramping values at the 95% confidence level. Close to the bifurcation point, the (quasi-)stationarity approximation becomes less valid, which is indicatedby the dashed part
of the two curves. It is seen that detecting a significant increase in autocorrelation requires a longer data window than detecting a significant increase in variance. With
Tw = 50 years (red dot-dashed line), an increase in variance can only be detected at the 95% confidence level after the red curve is below the 50-year level. The blue curve
shows the mean waiting time for a noise-induced transition; when this becomes shorter than the 50-year level, the early-warning signal (EWS) is no longer relevant due to
n-tipping occurring before tc. Thus the range of time where an EWS can be applied is indicated by the green band (limited by the crossings of the red and blue curves with
the size of the window). b Ten model realizations of the ramped approach to tc, notice a few n-tippings prior to tc. The black (black dashed) curve is the stable (unstable)
fixed point of themodel. c Increased variance as EWS: Black line is the pre-ramping steady state value, while the dashed lines are the two-standard error uncertainty range
for calculating variance within the 50-year data window. The blue and dashed blue curves are the same but for the model approaching the transition. The brown curves
correspond to the ten realizations in (b), while the green band corresponds to the green band in (a). The thin blue lines are the same obtained from simulating 1000
realizations. d Same as (c) but for the autocorrelation, where now the green band is narrower, corresponding to Twin(ac) being smaller than the window size.
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determine whether a critical transition will happen but also an esti-
mate of when it will happen. We predict with high confidence the
tipping to happen as soon as mid-century (2025–2095 is a 95% con-
fidence range). These results are under the assumption that the
model is approximately correct, and we, of course, cannot rule out

that othermechanisms are at play, and thus, the uncertainty is larger.
However, we have reduced the analysis to have as few and sound
assumptions as possible, and given the importance of the AMOC for
the climate system, we ought not to ignore such clear indicators of an
imminent collapse.
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Fig. 5 | Detection of early-warning signals and prediction of tipping time. a Sea
surface temperature (SST) anomaly (identical to Fig. 1e) together with the best
estimate model of the steady state approaching a critical transition. b, c Variance
and autocorrelation calculated within running 50-year windows, similar to Fig. 4c,

d. The two-standard error level (indicated by the purple band) is obtainedusing the
model to estimate the time varyingα (d) and σ2 (e) from the data. fBest estimate for
tc. The yellow histogram is the probability density for tc obtained by maximum
likelihood estimates (see Supplementary Information S1 and S2).
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The hysteresis simulations gathered in the model
intercomparison34 are equilibrium runs, for which a prediction of a
future collapse does obviously not apply. Likewise, for the simulations
specified in the CMIP6 experiment. It could though be relevant to
evaluate our method on state-of-the-art climate model simulations
with linearly ramped external forcing and different ramping speeds in
order to obtain themodel-specific confidence in earlyprediction of the
collapse judged solely from the EWSs.

Though we have established firm statistical methods to eval-
uate the confidence in the observed EWS, we can at present not rule
out the possibility that a collapse will only be partial and not lead to
a full collapse of the AMOC as suggested by some models: Note in
Fig. 2, the “MPM” in the top panel and the “MOMhor” in the bottom
panel both seem to show only partial tipping prior to the tipping to
the complete shutdown of the AMOC. This result is also found in a
more recent ocean model35. Furthermore, a high speed of ramping,
i.e., a high speed at which the critical value of the control parameter
is approached, could also increase the probability of tipping36. This
scenario is the case of rate-induced tipping37. Even with these
reservations, this is indeed a worrisome result, which should call
for fast and effective measures to reduce global greenhouse gas
emissions in order to avoid the steady change of the control
parameter toward the collapse of the AMOC (i.e., reduce tem-
perature increase and freshwater input through icemelting into the
North Atlantic region). As a collapse of the AMOC has strong
societal implications38, it is important to monitor the flow and EWS
from direct measurements39–41.

Methods
To obtain the AMOC fingerprint, two steps are required: The seasonal
cycle in the SST is governed by the surface radiation independent from
the circulation and thus removed by considering the monthly anoma-
lies, where the mean over the period of recording of the month is
removed. Second, there is an ongoing positive linear trend in the SST
related toglobalwarming,which is alsonot related to circulation. This is
compensated for by subtracting 2 × the global mean (GM) SST anomaly
(small seasonal cycle removed). This differs slightly from ref. 23, where
1 × the GM SST was subtracted. The “translation” from the proxy SST
temperature and AMOC flow is 0.26 SV/K [ref. 23, Fig. 3]. Here we have
taken into account that the warming is not globally homogeneous: The
warming in the SG region is larger than the global mean due to polar
amplification. The way we have estimated this effect is by comparing
the proxy with the AMOC estimates covering the period 1957–2004
from the so-called MOCz reported in the review by ref. 42. This shows a
drop of 3 SV in that period. Minimizing the difference between the
proxy SSTSG-β SSTGM and thismore directmeasurementwith respect to
β, we get β = 1.95 ≈ 2 rather than β = 1 used by ref. 23. The factor 2 is thus
theoptimal value for the polar amplification43 obtainedby calibrating to
recent direct measurements42. The original and our calibrated proxies
are shown in Fig. 7.

To check the robustness with respect to the AMOC fingerprint
record, we repeated the analysis, subtracting 1x and 3x GM SST from
the SG SST. Subtracting 3x GM SST only changes estimate and the
confidence intervals by a few years, whereas subtracting 1x GM SST
delays the tipping with 25 years, but the overall trend and conclusions
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Fig. 6 | Bootstrap confidence intervals, optimal estimation window andmodel
control.With parameters obtained from the data, a set of 1000 realizations of the
model are used in a bootstrap study to assess the uncertainty of parameters.
a–d Probability densities for tc, λ0, m and −A ×m. Red crosses are the values
obtained from the Atlantic meridional overturning circulation (AMOC) fingerprint
data. The 95% confidence intervals are indicated by orange lines. The critical time tc

is 2057, and the95%confidence interval is 2025–2095. eMean square error infitting
the ramping as a function of window size Tw and time of initiating ramping, t0. A
uniqueminimum is found forTw = 55 years and t0 = 1924. fQuantile-quantile-plot of
residuals from themodel, if points fall close to a straight line (black line), themodel
fits the data well.
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do not change. The results are given in Table 1. In the reanalysis, we
fixed t0 = 1924.

Estimator of the tipping time and model control
The AMOC fingerprint is assumed to be observations from a
process Xt given as a solution to Eqs. (1) and (2), and we wish to
estimate the parameters θ = (A,m, λ0, τr, σ) from observations
(x0, x1,…, xn) before time t0 and observations (y0, y1,…, yn) after
time t0. These equations cannot be explicitly solved, and the
exact distribution of Xt is not explicitly known. A standard way to
solve this is to approximate the transition density by a Gaussian
distribution obtained by the Euler–Maruyama scheme. However,
the estimators obtained from the Euler–Maruyama pseudo-
likelihood are known to be biased, especially in non-linear
models32. We estimate by a two-step procedure, approximating
the stationary distribution before time t0 by an
Ornstein–Uhlenbeck process, of which exact maximum likelihood
estimators are available (see Supplementary text S1), and using
Strang splitting for the non-stationary and non-linear part after
time t0, using methods proposed in ref. 32, see Supplementary
text S2 for details.

To test the model fit, uniform residuals, ui, i = 1,…, n were
calculated for the AMOC data using the estimated parameters
from the MLE method as follows. The model assumes that

observation xi follows some distribution function Fi,θ̂ for the
estimated parameter values θ̂. If this is true, then ui = Fi,θ̂ðxiÞ is
uniformly distributed on (0, 1). Transforming these residuals back
to a standard normal distribution provides standard normally
distributed residuals if the model is true. Thus, a normal quantile-
quantile plot reveals the model fit. The points should fall close to
a straight line. The reason for making the detour around the
uniform residuals is twofold. First, since the data is not stationary,
each observation follows its own distribution, and residuals can-
not be directly combined. Second, since the model is stochastic,
standard residuals are not well-defined, and observations should
be evaluated according to their entire distribution, not only the
distance to the mean.

Noise-induced tipping
The drift term in Eq. (1) is the negative gradient of a potential,
f(x, λ) = − ∂xV(x, λ) = − (A(x−m)2 + λ) with V(x, λ) = A(x−m)3/3 + (x −
m)λ. For λ < 0, the drift has two fixed points, m±

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
. The point

m+
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
is a local minimum of the potential V(x, λ) and is stable,

whereas m�
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
is a local maximum and unstable. The system

thus has two basins of attraction separated by m�
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
, with a

drift toward either m+
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
or −∞ dependent on whether

Xt>m�
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
or Xt<m�

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
. We denote the two basins of

attraction, the normal and the tipped state, respectively. When
λ = 0, the normal state disappears, and the system undergoes a
bifurcation and Xt will be drawn toward −∞.

Due to the noise, the process can escape into the tipped state
by crossing over the potential barrier ΔðλÞ=V ðm�

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
, λÞ�

V ðm+
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
, λÞ=4∣λ∣3=2=3A1=2. Assume Xt to be close to m+

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
at some time t, i.e., in the normal state. The escape time will
asymptotically (for σ→ 0) follow an exponential distribution such
that

Pðt,λÞ= 1� expð�t=τnðλÞÞ ð9Þ
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Fig. 7 | Compensationofglobalwarming in theAtlanticmeridionaloverturning
circulation (AMOC) fingerprint. In the sea surface temperature (SST) AMOC fin-
gerprint record, the compensation for global warming and polar amplification is
done by subtracting the global SST (SSTGM) from the subpolar gyre (SG) SST
(SSTSG). By calibrating by the MOCz AMOC proxy (red curves), the optimal AMOC
proxy is SSTSG-2 SSTGM. To ensure the robustness of our results, we have repeated

the analysis by subtracting 1x (purple) and 3xSSTGM (green) and comparedwith the
optimal 2x SSTGM subtracted (blue). The corresponding estimates for the time of
the collapse are shown in the same colors: Themiddle vertical line is themaximum
likelihood estimate of the tipping time, the box represents the 66.6% confidence
interval (Intergovernmental Panel on Climate Change (IPCC) definition of “likely”),
while the horizontal line represents the 99% confidence intervals.

Table 1 | Estimates and confidence intervals for the tipping
year using three proxies of the Atlantic meridional over-
turning circulation (AMOC), where the sea surface tempera-
ture (SST) is subtracted either 1, 2 or 3 times the global SST

Estimate 95% CI 66% CI

SSTSG-1 SSTGM 2083 2024–2180 2062–2128

SSTSG-2 SSTGM 2057 2025–2095 2039–2070

SSTSG-3 SSTGM 2067 2034–2102 2048–2083

Calibration with the MOCz AMOC proxy, the optimal is SSTSG-2 SSTGM, see Fig. 7.
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whereP(t, λ) is theprobability of observing an escape time shorter than
t for a given value of λ. Themeannoise-induced escape time τn(λ) is

44,45:

τnðλÞ=
2π expð2ΔðλÞ=σ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 00ðm+
ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
,λÞ∣V 00ðm�

ffiffiffiffiffiffiffiffiffiffiffi
∣λ∣=A

p
,λÞ∣

q
= ðπ=

ffiffiffiffiffiffiffiffi
A∣λ∣

p
Þ expð8∣λ∣3=2=3A1=2σ2Þ:

ð10Þ

Assume that the rate of change of λ(t) follows Eq. (2), then for
τr < τn(λ), the waiting time for a random crossing is so long that a
crossing will not happen before a bifurcation-induced transition hap-
pens (b-tipping). If τr > τn(λ), a noise-induced tipping is expected
before the bifurcation point is reached. Since τn(λ) decreases with
increasing λ, at some point, the two time scales will end up matching.

Normal form of the saddle-node bifurcation
Consider the general dynamical equation

dx
dt

= f ðx,λÞ, ð11Þ

where x is a variable and λ is a (fixed) parameter. A point x0 with
f(x0, λ) = 0 is afixedpointor steady state. Afixedpoint is stable/unstable
if ∂xf ðx,λÞx = x0 is negative/positive; thus, the fixed point is attracting/
repelling. If f(x, λ) is not a linear functionof x,multiple steady statesmay
exist. A saddle-node bifurcation occurs when changing the control
parameter λ through a critical value λc a stable and an unstable fixed
point merge and disappear. The situation is shown in the figure, where
the blue surface is f(x, λ), while the gray (null-) plane is f(x, λ) = 0. For a
constant value of λ, the dynamics is determined by the black curve. The
fixed points are determined by the intersection with the null plane
(green); the point in the front is the stable fixed point, while the further
point is theunstablefixedpoint.Whenchanging λ toward λc =0, the two
fixed points merge at the saddle-node bifurcation (m, λc) (green). The
normal form of the saddle node is obtained by expanding f(x, λ) to the
lowest order around the point (m, λc), noting that f(m, λc) = 0,
∂xf ðx,λÞðx,λÞ= ðm,λcÞ =0 and ∂λf ðx,λÞðx,λÞ= ðm,λcÞ<0 (see Fig. 8):

f ðx, λÞ≈ 1
2
∂xxf ðx, λÞðx,λÞ= ðm, λcÞ × ðx �mÞ2 +∂λf ðx, λÞðx, λÞ= ðm,λcÞ

× ðλ� λcÞ= � Aðx �mÞ2 � ~λ,
ð12Þ

where A= � 1
2∂xxf ðx, λÞðx,λÞ= ðm,λcÞ and

~λ= � ∂λf ðx,λÞðx,λÞ= ðm,λcÞ × ðλ� λcÞ.
This is the normal form for the saddle-node bifurcation. Thus, close to
the bifurcation point, the stable steady state is

x0 =m+
ffiffiffiffiffiffiffiffiffiffiffiffi
�~λ=A

q
: ð13Þ

In order to see that this is indeed the case for the AMOC transition
also in comprehensive climate models, Fig. 2 is adapted from the
model intercomparison study34. The steady state curves obtained are
from simulations, with a very slowly changing control parameter
(freshwater forcing). The top panel shows ocean-only models, while
the bottom panel shows atmosphere-ocean models. The curves are,
even away from the transition, surprisingly well fitted by Eq. (13). Note
that for some models, the transition happens before the critical point,
as should be expected from noise-induced transitions. Note also that
the data has been smoothed such that increasing variance close to the
transition is not visible. This observation strongly supports the
assumption of a saddle-node bifurcation, while it also shows that
(m, λc) (black dots) are quite different betweenmodels, thus calling for
reliable determination from observations.

Data availability
Data can be found in the following repository: https://doi.org/10.
17894/ucph.b8f99b67-d4e6-4a2e-b518-00bddeed323b.

Code availability
Computer code (Matlab andR) canbe found in the following repository:
https://doi.org/10.17894/ucph.b8f99b67-d4e6-4a2e-b518-00bddee
d323b.
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